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ABSTRACT
We report evidence for ongoing lateral slump of part of the 

southeastern fl ank of the Pico volcanic ridge in the Azores. Data 
from a high-resolution digital elevation model, fi eld work, GPS, 
and radar interferometry show that: (1) the slumping sector is 
several cubic kilometers in size; (2) the structure involves several 
curved scars with normal fault kinematics; (3) the central part is 
undergoing little horizontal displacement toward the southeast (1.6 
± 1.3 mm/yr), but signifi cant downward movement (5–12 mm/yr); 
and (4) the outer part of the southeastern fl ank of Pico is subsid-
ing faster than the inner parts; this likely refl ects recent individu-
alization of a steep seaward-dipping fault in the moving mass. The 
slump shares similarities with active slumps recognized elsewhere, 
although the studied area may represent only the proximal part of a 
much larger complex potentially affecting the deep submarine base 
of the island. Displacement of the subaerial part of the southeastern 
fl ank of Pico seems to be accommodated by the movement and rota-
tion of large blocks along listric normal faults.

INTRODUCTION
The growth of volcanic islands is generally punctuated by large 

lateral fl ank failures, which can trigger destructive tsunamis (Keating 
and McGuire, 2000; McMurtry et al., 2004). Giant sector collapses have 
been recognized around numerous islands worldwide, e.g., in Hawaii 
(Lipman et al., 1988; Moore et al., 1994; Morgan et al., 2000), French 
Polynesia (Clouard and Bonneville, 2004; Hildenbrand et al., 2006), 
the Canary Islands (Krastel et al., 2001; Walter and Schmincke, 2002; 
Boulesteix et al., 2012), Reunion Island (Duffi eld et al., 1982; Gillot et 
al., 1994), and the Caribbean arc (Le Friant et al., 2003; Samper et al., 
2007). A number of triggering factors have been proposed over the past 
20 years (e.g., McGuire, 1996; Elsworth and Day, 1999; McMurtry et al., 
1999, 2004; Klügel et al., 2005; Quidelleur et al., 2008), including con-
centration of dikes along rift zones and associated fl uid pressurization 
by heating and/or compression of groundwater trapped between dikes, 
ground shaking by large regional earthquakes, gravitational spreading 
of the volcanoes along weak geological layers, or sea-level variations 
associated with climatic changes.

Contrasting types of sector collapse have been distinguished (Moore 
et al., 1994): (1) slow-moving rotational landslides along a deep-sea 
detachment fault, often called slumps; and (2) catastrophic landslides 
produced by the rapid detachment of the island fl ank, which may release 
fast-moving debris avalanches. These two kinds of processes are not 
mutually exclusive; part of a slump may suddenly collapse and trigger a 
tsunami (e.g., Tilling et al., 1976; Moore et al., 1994).

The Azores archipelago, in the Atlantic Ocean, comprises nine 
active volcanic islands and numerous linear submarine ridges developed 
close to the triple junction between the North American, Eurasian, and 
African lithospheric plates (Fig. 1), in an area characterized by impor-
tant regional deformation and recurrent high-magnitude earthquakes 
(Borges et al., 2007). The islands are marked by a multistage evolution, 

including fast-growing phases and multiple destruction events, such as 
vertical caldera collapse, lateral landslides, and rock fall of various sizes 
(Mitchell, 2003; Calvert et al., 2006; Hildenbrand et al., 2008; Silva et 
al., 2012).

Pico Island is a narrow and steep volcanic ridge, formed by magma 
concentration along the N110° trend (Fig. 1). The oldest volcanic units 
are exposed in the central and eastern parts of the island, whereas more 
recent volcanic activity produced the Pico volcano, which occupies the 
western third of the island (Woodhall, 1974; Nunes, 1999).

Due to its steep topography, Pico Island is particularly sensitive to 
fl ank instability. The southern fl ank of the ridge shows several curved 
structures that are concave toward the ocean (Fig. 1), previously inter-
preted as refl ecting early caldera development, faulting, or ancient lat-
eral collapse (Woodhall, 1974; Nunes, 1999; Mitchell, 2003; Nunes et 
al., 2006). Knowledge of the geometry, volume, and kinematics of these 
structures, and understanding of their recent evolution and susceptibil-
ity to further movement, are critical for risk and hazard assessment, but 
remain poorly constrained. Our study focuses on the unstable southeast-
ern part of the ridge; data from a high-resolution digital elevation model 
(DEM), fi eld work, GPS, and radar interferometry show that part of the 
fl ank is currently being displaced toward the ocean, accommodated by 
the motion of large blocks that may eventually detach, with catastrophic 
consequences.

SLUMP GEOMETRY AND KINEMATICS
Using cartographic data and maps generated in 2005 by the Portu-

guese Army Institute (scale 1:25,000), we developed a DEM with 10 m 
spatial resolution and a vertical accuracy of 2 m. It was used to produce a 
shaded relief map (Fig. 2A), a slope map, and topographic cross sections *E-mail: anthony.hildenbrand@u-psud.fr.
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Figure 1. Location of Azores volcanic archipelago near triple junc-
tion between North American (NA), Eurasian (EU), and African (AF) 
plates. Bold lines show Mid-Atlantic Ridge (MAR) and Terceira Rift 
(TR). FZ—fracture zone. Inset: Shaded relief map showing main mor-
phology of Pico Island. Dotted lines highlight axis of main N110° rift 
zone. Two main landslide failures affect southern fl ank of island. 
Rectangle shows geographical extension of studied southeastern 
collapse area (Fig. 2). R is Ribeiras town. 
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(Fig. DR1 in GSA Data Repository1), which, together with geologic data 
(Figs. 2B and 3), provide important new constraints on the geometry of 
the failure. 

1. The main collapse rim is exposed as an arcuate scarp open to the 
southeast. It forms a 300-m-high prominent headwall with steep slopes 
dipping as much as 60°. The northern part of this structure has been partly 
covered by recent lava fl ows, but discontinuous unburied segments can be 
identifi ed, suggesting an overall horseshoe-shape geometry. 

2. The inner portion of the collapse sector is marked by a morpho-
logical plateau with gentle slopes. The upper part of the plateau is com-
posed of recent lava fl ows erupted from small cones developed at the base 
of the main failure. 

3. The plateau is interrupted by slope breaks; from west to east, three 
main scarps can be identifi ed (S1, S2, and S3, Fig. 2; Item DR1 in the 
Data Repository). S1 occurs along a lineament roughly parallel to the 
southern end of the main failure. Its northern end is apparently connected 
with the main scar. S2 extends over a large area as an arcuate structure 
affecting the outer part of the plateau. It has a geometry typical of lateral 
failures, starting with a north-south rim at sea level, then bifurcating east-
ward and becoming almost parallel to the main axis of the island. This 
scarp is characterized by a steep seaward dip of as much as 45°. Farther 

east, the slope is smoothed by recent lava fl ows erupted from volcanic 
cones located along the main rift zone, and from parasitic cones developed 
within the collapse sector. The S3 scarp has been previously interpreted as 
fossil coastal cliffs (Nunes, 1999); however, it defi nes a clear embayment 
partly covered by recent lava fl ows, which cascaded down to the sea and 
formed a lava delta.

The architecture and kinematics of the slump are further constrained 
by fi eld data (Fig. 3; Item DR2). The in situ old volcanic sequence is 
exposed along coastal cliffs as a pile of thin lava fl ows, including red lev-
els of Strombolian fallout deposits (π symbol in Fig. 3). This succession 
is interrupted by a main scarp making up the western rim of the slump 
(Fig. 3). To the east of this major discontinuity, a different volcanic suc-
cession crops out. It likely defi nes the top of a large downthrown block, 
which would therefore indicate a minimum vertical offset of ~300 m. This 
large block is overlain by a thick layer of poorly sorted talus deposits (Td 
in Fig. 3), including angular lava blocks exceeding 1 m in size, that imply 
rapid infi lling of a steep-sided canyon by large blocks probably shed from 
the main slump scar. The talus unit is covered by a suite of thick volcanic 
lava fl ows wedging out toward the main fault scarp (Fig. 3; Item DR2). All 
the fi eld data suggest that the main collapse rim has acted as a major fault 
with normal kinematics. Gradual downward movement resulted in the 
persistence of a narrow drainage system, which was fi lled by lava fl ows 
and signifi cant amounts of debris. Recent movement can also be suspected 
from the active development of a narrow debris fan remobilizing the talus 
deposits along the main scar (Fig. 3).

SLUMP MONITORING BY GPS AND RADAR 
INTERFEROMETRY

In the framework of the research projects SARAÇORES (Deforma-
tion Partition in Azores using interferometric SAR Images; Catita et al., 
2005) and TANGO (TransAtlantic Network for Geodesy and Oceanogra-
phy; Fernandes et al., 2004), a dense GPS network was installed in Faial 
and Pico Islands (details in Item DR3). It consists of 31 stations, distrib-
uted mostly along the coastlines. One station (PRIB) is located near sea 
level in the central part of the collapse area, close to the town of Ribeiras. 
Four GPS campaigns were carried out on Faial and Pico Islands between 
1999 and 2006. Measurements were made in survey mode, with a mini-
mum of three sessions (24 h consecutive observation each) per station. 
The data set was complemented by synthetic aperture radar (SAR) data, 
aimed at producing interferograms and quantifying vertical displacements 
between 2006 and 2009 (for details, see the Data Repository and Catalão 
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Figure 2. A: Main morphostructural units within southeastern slump 
area. Main scars here recognized are highlighted by white dashed 
lines. Black line indicates inferred continuation of main structure ex-
tending to southern part of axial rift zone. B: Simplifi ed geologic map 
of studied area. Modifi ed after Nunes (1999).

1GSA Data Repository item 2012264, Item DR1 (detailed morphology of 
Pico southeastern slump), Item DR2 (thick lava fl ows overlying the talus deposits), 
and Item DR3 (methods and data processing; GPS and InSAR), is available online 
at www.geosociety.org/pubs/ft2012.htm, or on request from editing@geosociety
.org or Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.

Figure 3. Photograph taken from sea showing geometric relation-
ships between main geological units exposed along southern end of 
main collapse rim at shore level. Td—talus deposits; pi symbols—
levels of Strombolian fallout deposits; blue outline and symbol show 
point of view from which photo exposed in Item DR2 (see footnote 1) 
was taken (upward). 
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et al. [2011]). The GPS horizontal surface velocities of Pico were used to 
estimate the parameters of the rigid body motion model associated with 
regional plate tectonics. The residuals between the rigid body motion and 
the geodetic data are attributed to intra-island deformation and are a good 
measure of local variations of the strain fi eld.

Residual velocities computed at PRIB (2σ uncertainties)  show a 
slight southeast displacement, with an average value of 1.6 ± 1.3 mm/yr, 
and a signifi cant average vertical subsidence of 7.1 ± 1.9 mm/yr. Such 
downward vertical motion is consistent with the values obtained from 
radar interferometry (Fig. 4), although those data were acquired between 
2006 and 2009 and show slightly higher rates of subsidence. The InSAR 
(In—interferometric) data show that the sectors outside of the collapse 
area are rather stable, with no signifi cant vertical movement or little sub-
sidence (<5 mm/yr), whereas downward vertical movement in the collapse 
area reaches 12 mm/yr, i.e., a net subsidence of 7 to 12 mm/yr. The highest 
rates are observed in the central part of the collapse, whereas the sector 
bounded by the main fault scar shows values between 5 and 8 mm/yr.

SLUMP MECHANISMS AND PROPAGATION
Previous studies have considered that the present confi guration of the 

southeastern fl ank of Pico could refl ect vertical caldera collapse (Woodhall, 
1974; Mitchell et al., 2011). This is inconsistent with observed geology and 
our data, because (1) the horseshoe shape of the failures supports lateral 
movement; (2) central caldera collapse should have cut the east and west 
fl anks of the old volcano in a symmetrical way, but its eastern fl ank is not 
exposed on land; and (3) present-day vertical motion is inconsistent with 
caldera collapse of the oldest volcanic lavas of the island. Lateral collapse 
has been proposed, but is considered as currently inactive (Nunes, 1999; 
Nunes et al., 2006; Mitchell et al., 2011); this is inconsistent with our data. 
One may argue that the measured displacements could result from active 
movements along strike-slip faults coinciding with the main axis of the 
island (Madeira and Brum da Silveira, 2003), with possible development 
of a pull-apart structure between such faults. However, such right-lateral 
movement would imply compression along the north-south main collapse 
rim, which is inconsistent with the measured fl ank spreading.

The main scar extends to the eastern parts of the ridge main axis, 
where numerous young cones have developed. The localization of the 
main failure surface thus may have been infl uenced by dike intrusion and 
magma push along the main rift zone, a mechanism frequently advocated 

to explain the development of fl ank instability on volcanic islands (Moore 
et al., 1994; Elsworth and Day, 1999; Hildenbrand et al., 2006).

The initiation of the failure is not well constrained in time, because 
there are insuffi cient geochronological data. Extrapolating the measured 
rate of subsidence along the main rim (net value of 5 mm/yr on average) 
suggests gradual downward movement during the past 60 k.y., but dis-
placement rates may not have been constant through time. Nevertheless, 
the several curved scars developed farther east show less vertical offset 
and affect younger lava fl ows erupted from vents that apparently migrated 
sequentially eastward. This suggests recent eastward propagation of the 
failure within the central outer parts of the moving mass. The develop-
ment of volcanic cones along the trace of the several secondary curved 
scars thus probably refl ects the opening of lateral cracks, which served 
as local pathways for recent magma ascent. Although our InSAR data do 
not record present differential movement along S3, the formation of this 
arcuate scarp is here interpreted as resulting from recent deformation close 
to the island shore, which yielded the recurrent detachment of coastal seg-
ments. This is consistent with the presence of a moderate-sized debris fi eld 
on the southern submarine slope of the ridge, identifi ed from marine geo-
physical surveys (Mitchell, 2003).

Our new geodetic data show that the present deformation affects a 
signifi cant part of the southeastern fl ank of Pico Island, and not solely the 
central lava delta. Therefore, other causes of subsidence such as recent lava 
cooling or compaction of underlying sediments cannot adequately explain 
the recorded movement, especially as a similar recent lava delta developed 
west of the collapse area does not show any appreciable downward move-
ment (Fig. 4). Differential deformation at the foot of the various scars iden-
tifi ed here also suggests the discrete displacement of large blocks along 
several curved faults with typical normal kinematics, as recognized or sus-
pected on the Hilina fault system in Hawaii (Smith et al., 1999), the Cumbre 
Vieja western sector collapse on La Palma in the Canary Islands (Hilden-
brand et al., 2003; González et al., 2010), or on the east fl ank of the dor-
mant Damavand volcano in northern Iran (Shirzaei et al., 2011). The rates 
of subsidence reported here are signifi cantly higher than the rates measured 
on the western slope of La Palma, but they are one order of magnitude lower 
than the values recorded on the southern mobile fl ank of Kilauea volcano in 
Hawaii (Owen et al., 2000). With a subaerial volume estimated as ~10 km3, 
the southeastern collapse of Pico also appears to be signifi cantly smaller 
than typical Hawaiian giant landslides (Moore et al., 1994), but the struc-
tures on Pico may evidence only the proximal part of a much larger complex 
potentially affecting the deep base of the submarine fl ank.

FURTHER EVOLUTION?
The lack of volcanic eruptions or detectable infl ation of the volcanic 

ridge over the period of geodetic monitoring implies that active downward 
displacement of the southeastern mobile fl ank of Pico Island is not a direct 
result of forceful magma intrusion along the rift zone. In addition, the 
lack of detected shallow earthquakes within the collapse area during this 
geodetic monitoring time interval suggests that creep is currently the main 
mode of deformation.

The higher rates of current vertical displacement measured near sea 
level possibly refl ect cumulative displacements along the main rim of the 
collapse, and additional displacements along the more recent outer fail-
ures, especially S2 (Fig. 4). By this hypothesis, vertical displacements in 
the outer fl ank reach an average value of ~3–5 mm/yr, which is similar to 
or slightly higher than the maximum horizontal displacement rate derived 
from our GPS station (2.9 mm/yr), when uncertainties are accounted for. 
Such data support the fact that the distal part of the ridge is currently mov-
ing along a steep fault with a minimum dip of 45° toward the southeast. 
This is consistent with the exposed geometry of the outer arcuate structure 
S2, which therefore constitutes a priority target for further monitoring and 
hazard assessment, e.g., eventual block detachment and associated poten-
tial tsunami.

GPS horizontal: 1.6 ± 1.3 mm/yr
GPS vertical: -7.1 ± 1.9 mm/yr
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Figure 4. Horizontal and vertical displacement rates within collapse 
area derived from GPS and synthetic aperture radar (SAR) data ac-
quired from 2001–2006 and 2006–2009, respectively. Distinct colors 
for various rates of average vertical displacements are in mm/yr. 
Negative values and positive values are for downward and upward 
movements, respectively.
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